Reusable Learning Object (RLO)

Objective of this Reusable Learning Object:

The objective of the RLO is to clarify what is expected and to include a model answer for a hypothesis test question. This is an assessment literacy activity.

Reusable Learning Object Format:

The reusable learning object consists of a video and an accompanying Microsoft Word document. The video and the accompanying word document (pages 2 to 7 below) will be on Moodle and the students can review them as often as required.

The video walks the students through an example of a "Two sample, equal variance t-test" question.

I did an example of this question in class with the students and I have used a photo of the handwritten notes that I created in class, (using the document camera). I incorporated the handwritten notes so that the RLO would look and feel like the actual output from a written exam.

Reusable Learning Object Location:

The video I created is located on my GMIT Stream channel.

The word document is on my GMIT Moodle page including a link to the video.

Rachel Mc Carthy, April 2019

Hypothesis Testing: Assessment 1

A quality technician wants to verify if there is a statistical difference between the average length from Machine A and the average length from Machine B, at a 95% confidence level.

Five samples were measured from each machine, the results are given in the table below, (length was measured in millimetres).

She has already verified, using an F-test, that the variance of Machine A is equal to the variance of Machine B. The pooled standard deviation (s_p) is 0.46mm.

Machine A	Machine B		
22.1	24.2		
23.4	23.9		
22.7	24.5		
23.1	25.0		
22.9	24.8		

(a) What type of hypothesis test should the technician carry out?	(3 Marks)
(b) Write the null and the alternate hypothesis.	(5 Marks)
(c) Perform the relevant statistical test using the data and the information above.	(10 Marks)
(d) What is the conclusion of the hypothesis test?	(4 Marks)
	(2 Marke)

(3 Marks) Should the technician recommend that either Machine A or Machine B could be used to manufacture parts that are intended to have the same average length and why?

Formula required:

$$t = \frac{\overline{X}_1 - \overline{X}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 DF = n_1 + n_2 - 2

Machine A(mn)	Machine B (mm)
22.1	24.2
23.4	23.9
22.7	24.5
23 . 1 .	25.0
22.9	24.8

(a) What type of hypothesis test should the technician carry out? (3 Marks) Same averal the no hine Mad B 21 avera AS cl Calidane Leve vakiance qu Assump

Sal : 2 sample equal what pothesis t - test hy independ

(b)

Write the null and the alternate hypothesis.

(5 Marks)

Machine A is Machine gual Ho : The to the aug ď MA The is not quil M.B to

(c) Perform the relevant statistical test using the data and the information above.

 $t = \frac{\overline{X}_1 - \overline{X}_2}{s_p \sqrt{\frac{1}{s_p} + \frac{1}{s_p}}}$ sp = 0.46 mm 1 = 282.84 mm X2 = 24.48 mm $n_1 = 5$ 5 No = t = 22.84 - 24.48 1 + 1 0.46 5 1-64 0.46) 70 7 0.4 - 1.64 calculatel test statistic 0.46 × 0.632 = - 1.64 =-5.65 0.2909

D.F. = n1 + n2 -2 D.F= 5+5-2 10 -2 D.F. 8

as the average of Machine A the same as the average of Machine B at the 95% Confidence Level & = 0=05 Assume qual vakiance

Table of the Student's t-distribution

The table gives the values of $t_{\alpha;v}$ where $Pr(T_v > t_{\alpha;v}) = \alpha$, with v degrees of freedom

α	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
1	3.078	6.314	12.076	31.821	63.657	318.310	636.620
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587

Critical Value from t-table

Test Statistic Lower Critical Value

Upper Critical Value

(d) What is the conclusion of the hypothesis test? = Reject the H_0

(4 Marks)

d MA is not qual to M.B. The avg

HA MB MA

onclusion: There is a difference in the Machine A and the ava ang of En Mac ieB

(e) (3 Marks) Should the technician recommend that <u>either</u> Machine A or Machine B could be used to manufacture parts that are intended to have the same average length and why?

No, as the machines are producing parts that have statically different average lengths - give a little more information based on your own experience for full marks.

For info: NI 5, (12-+ 2 ni A2